### Abstract

Language | English |
---|---|

Place of Publication | www |

Publisher | Mathematical Optimization Society |

Number of pages | 22 |

State | Published - 2013 |

Externally published | Yes |

Series | Optimization Online |
---|---|

Number | 4082 |

Volume | 10 |

### Keywords

### Cite this

*Strongly Agree or Strongly Disagree? Rating Features in Support Vector Machines*. www: Mathematical Optimization Society. Optimization Online, No. 4082, Vol.. 10

}

**Strongly Agree or Strongly Disagree? Rating Features in Support Vector Machines.** / Carrizosa, Emilio; Nogales-Gómez, Amaya; Romero Morales, Dolores .

Research output: Working paper › Research › peer-review

TY - UNPB

T1 - Strongly Agree or Strongly Disagree?

T2 - Rating Features in Support Vector Machines

AU - Carrizosa,Emilio

AU - Nogales-Gómez,Amaya

AU - Romero Morales,Dolores

PY - 2013

Y1 - 2013

N2 - In linear classifiers, such as the Support Vector Machine (SVM), a score is associated with each feature and objects are assigned to classes based on the linear combination of the scores and the values of the features. Inspired by discrete psychometric scales, which measure the extent to which a factor is in agreement with a statement, we propose the Discrete Level Support Vector Machine (DILSVM) where the feature scores can only take on a discrete number of values, defined by the so-called feature rating levels. The DILSVM classifier benefits from interpretability as it can be seen as a collection of Likert scales, one for each feature, where we rate the level of agreement with the positive class. To build the DILSVM classifier, we propose a Mixed Integer Linear Programming approach, as well as a collection of strategies to reduce the building times. Our computational experience shows that the 3-point and the 5-point DILSVM classifiers have comparable accuracy to the SVM with a substantial gain in interpretability and sparsity, thanks to the appropriate choice of the feature rating levels.

AB - In linear classifiers, such as the Support Vector Machine (SVM), a score is associated with each feature and objects are assigned to classes based on the linear combination of the scores and the values of the features. Inspired by discrete psychometric scales, which measure the extent to which a factor is in agreement with a statement, we propose the Discrete Level Support Vector Machine (DILSVM) where the feature scores can only take on a discrete number of values, defined by the so-called feature rating levels. The DILSVM classifier benefits from interpretability as it can be seen as a collection of Likert scales, one for each feature, where we rate the level of agreement with the positive class. To build the DILSVM classifier, we propose a Mixed Integer Linear Programming approach, as well as a collection of strategies to reduce the building times. Our computational experience shows that the 3-point and the 5-point DILSVM classifiers have comparable accuracy to the SVM with a substantial gain in interpretability and sparsity, thanks to the appropriate choice of the feature rating levels.

KW - Support Vector Machines

KW - Mixed Integer Linear Programming

KW - Likert scale

KW - Interpretability

KW - Feature rating level

M3 - Working paper

BT - Strongly Agree or Strongly Disagree?

PB - Mathematical Optimization Society

CY - www

ER -