Using the TED Talks to Evaluate Spoken Post-editing of Machine Translation

Jeevanthi Liyanapathirana, Andrei Popescu-Belis

    Publikation: Bidrag til bog/antologi/rapportKonferencebidrag i proceedingsForskningpeer review

    58 Downloads (Pure)

    Abstract

    This paper presents a solution to evaluate spoken post-editing of imperfect machine translation output by a human translator. We compare two approaches to the combination of machine translation (MT) and automatic speech recognition (ASR): a heuristic algorithm and a machine learning method. To obtain a data set with spoken post-editing information, we use the French version of TED talks as the source texts submitted to MT, and the spoken English counterparts as their corrections, which are submitted to an ASR system. We experiment with various levels of artificial ASR noise and also with a state-of-the-art ASR system. The results show that the combination of MT with ASR improves over both individual outputs of MT and ASR in terms of BLEU scores, especially when ASR performance is low.
    OriginalsprogEngelsk
    TitelThe LREC 2016 Proceedings : Tenth International Conference on Language Resources and Evaluation
    RedaktørerNicoletta Calzolari, Khalid Choukri, Thierry Declerck, Marko Grobelnik, Bente Maegaard, Joseph Mariani, Asuncion Moreno, Jan Odijk, Stelios Piperidis
    Antal sider8
    UdgivelsesstedParis
    ForlagEuropean Language Resources Association
    Publikationsdato2016
    Sider2232-2239
    ISBN (Elektronisk)9782951740891
    StatusUdgivet - 2016
    BegivenhedThe 10th International Conference on Language Resources and Evaluation. LREC 2016 - Portorož, Slovenien
    Varighed: 23 maj 201628 maj 2016
    Konferencens nummer: 10
    http://lrec2016.lrec-conf.org/en/

    Konference

    KonferenceThe 10th International Conference on Language Resources and Evaluation. LREC 2016
    Nummer10
    Land/OmrådeSlovenien
    ByPortorož
    Periode23/05/201628/05/2016
    Internetadresse

    Emneord

    • Machine Translation
    • Spoken post-editing
    • Evaluation

    Citationsformater