Abstract
Originalsprog | Engelsk |
---|---|
Tidsskrift | Organizational Behavior and Human Decision Processes |
Vol/bind | 165 |
Sider (fra-til) | 228-249 |
Antal sider | 22 |
ISSN | 0749-5978 |
DOI | |
Status | Udgivet - jul. 2021 |
Emneord
- Crowdsourcing data analysis
- Scientific transparency
- Research reliability
- Scientific robustness
- Researcher degrees of freedom
- Analysis-contingent results
Adgang til dokumentet
- 10.1016/j.obhdp.2021.02.003Licens: CC BY
- martin_schweinsberg_et_al_same_data_different_conclusions_publishersversionForlagets udgivne version, 9,6 MBLicens: CC BY
Handle.net
Citationsformater
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
I: Organizational Behavior and Human Decision Processes, Bind 165, 07.2021, s. 228-249.
Publikation: Bidrag til tidsskrift › Tidsskriftartikel › Forskning › peer review
TY - JOUR
T1 - Same Data, Different Conclusions
T2 - Radical Dispersion in Empirical Results when Independent Analysts Operationalize and Test the Same Hypothesis
AU - Schweinsberg, Martin
AU - Feldman, Michael
AU - Staub, Nicola
AU - van den Akker, Olmo R.
AU - van Aert, Robbie C. M.
AU - van Assen, Marcel A. L. M.
AU - Liu, Yang
AU - Althoff, Tim
AU - Heer, Jeffrey
AU - Kale, Alex
AU - Mohamed, Zainab
AU - Amireh, Hashem
AU - Prasad, Vaishali Venkatesh
AU - Bernstein, Abraham
AU - Robinson, Emily
AU - Snellman, Kaisa
AU - Sommer, S. Amy
AU - Otner, Sarah M. G.
AU - Robinson, David
AU - Madan, Nikhil
AU - Silberzahn, Raphael
AU - Goldstein, Pavel
AU - Tierney, Warren
AU - Murase, Toshio
AU - Mandl, Benjamin
AU - Viganola, Domenico
AU - Strobl, Carolin
AU - Schaumans, Catherine B. C.
AU - Kelchtermans, Stijn
AU - Naseeb, Chan
AU - Garrison, S. Mason
AU - Yarkoni, Tal
AU - Chan, C. S. Richard
AU - Adie, Prestone
AU - Alaburda, Paulius
AU - Albers, Casper
AU - Alspaugh, Sara
AU - Alstott, Jeff
AU - Nelson, Andrew A.
AU - de la Rubia, Eduardo Arinõ
AU - Arzi, Adbi
AU - Bahník, Stephan
AU - Baik, Jason
AU - Balling, Laura Winther
AU - Banker, Sachin
AU - Baranger, David AA
AU - Barr, Dale J.
AU - Barros-Rivera, Brenda
AU - Bauer, Matt
AU - Blaise, Enuh
AU - Boelen, Lisa
AU - Carbonell, Katerina Bohle
AU - Briers, Robert A.
AU - Burkhard, Oliver
AU - Canela, Miguel-Angel
AU - Castrillo, Laura
AU - Catlett, Timothy
AU - Chen, Olivia
AU - Clark, Michael
AU - Cohn, Brent
AU - Coppock, Alex
AU - Cuguero-Escofét, Nataliá
AU - Curran, Paul G.
AU - Cyrus-Lai, Wilson
AU - Dai, David
AU - Riva, Giulio Valentino Dalla
AU - Danielsson, Henrik
AU - Russo, Rosaria de F.S.M.
AU - de Silva, Niko
AU - Derungs, Curdin
AU - Dondelinger, Frank
AU - de Souza, Carolina Duarte
AU - Dube, B. Tyson
AU - Dubova, Marina
AU - Dunn, Ben Mark
AU - Edelsbrunner, Peter Adriaan
AU - Finley, Sara
AU - Fox, Nick
AU - Gnambs, Timo
AU - Gong, Yuanyuan
AU - Grand, Erin
AU - Greenawalt, Brandon
AU - Han, Dan
AU - Hanel, Paul H. P.
AU - Hong, Antony B.
AU - Hood, David
AU - Hsueh, Justin
AU - Huang, Lilian
AU - Hui, Kent N.
AU - Hultman, Keith A.
AU - Javaid, Azka
AU - Jiang, Lily Ji
AU - Jong, Jonathan
AU - Kamdar, Jash
AU - Kane, David
AU - Kappler, Gregor
AU - Kaszubowski, Erikson
AU - Kavanagh, Christopher M.
AU - Khabsa, Madian
AU - Kleinberg, Bennett
AU - Kouros, Jens
AU - Krause, Heather
AU - Krypotos, Angelos-Miltiadis
AU - Lavbîc, Dejan
AU - Lee, Rui Ling
AU - Leffel, Timothy
AU - Lim, Wei Yang
AU - Liverani, Silvia
AU - Loh, Bianca
AU - Lønsmann, Dorte
AU - Low, Jia Wei
AU - Lu, Alton
AU - MacDonald, Kyle
AU - Madan, Christopher R.
AU - Hjorth Madsen, Lasse
AU - Maimone, Christina
AU - Mangold, Alexandra
AU - Marshal, Adrienne
AU - Matskewich, Helena Ester
AU - Mavon, Kimia
AU - McLain, Katherine L.
AU - McNamara, Amelia A.
AU - McNeill, Mhairi
AU - Mertens, Ulf
AU - Miller, David
AU - Moore, Ben
AU - Moore, Andrew
AU - Nantz, Eric
AU - Nasrullah, Ziauddin
AU - Nejkovic, Valentina
AU - Nell, Colleen S.
AU - Nelson, Andrew Arthur
AU - Nilsonne, Gustav
AU - Nolan, Rory
AU - O’Brien, Christopher E.
AU - O’Neill, Patrick
AU - O’Shea, Kieran
AU - Olita, Toto
AU - Otterbacher, Jahna
AU - Palseti, Dianaa
AU - Pereira, Bianca
AU - Pozdniakov, Ivan
AU - Protzko, John
AU - Reyt, Jean-Nicolas
AU - Riddle, Travis
AU - Ali, Amal (Akmal) Ridhwan Omar
AU - Ropovik, Ivan
AU - Rosenberg, Joshua M.
AU - Rothen, Stephane
AU - Schulte-Mecklenbeck, Michael
AU - Sharma, Nirek
AU - Shotwell, Gordon
AU - Skarzynski, Martin
AU - Stedden, William
AU - Stodden, Victoria
AU - Stoffel, Martin A.
AU - Stoltzman, Scott
AU - Subbaiah, Subashini
AU - Tatman, Rachael
AU - Thibodeau, Paul H.
AU - Tomkins, Sabina
AU - Valdivia, Ana
AU - Druijff-van de Woestijne, Gerrieke B.
AU - Viana, Laura
AU - Villeséche, Florence
AU - Wadsworth, W. Duncan
AU - Wanders, Florian
AU - Watts, Krista
AU - Wells, Jason D.
AU - Whelpley, Christopher E.
AU - Won, Andy
AU - Wu, Lawrence
AU - Yip, Arthur
AU - Youngflesh, Casey
AU - Yu, Ju-Chi
AU - Zandian, Arash
AU - Zhang, Leilei
AU - Zibman, Chava
AU - Uhlmann, Eric Luis
PY - 2021/7
Y1 - 2021/7
N2 - In this crowdsourced initiative, independent analysts used the same dataset to test two hypotheses regarding the effects of scientists’ gender and professional status on verbosity during group meetings. Not only the analytic approach but also the operationalizations of key variables were left unconstrained and up to individual analysts. For instance, analysts could choose to operationalize status as job title, institutional ranking, citation counts, or some combination. To maximize transparency regarding the process by which analytic choices are made, the analysts used a platform we developed called DataExplained to justify both preferred and rejected analytic paths in real time. Analyses lacking sufficient detail, reproducible code, or with statistical errors were excluded, resulting in 29 analyses in the final sample. Researchers reported radically different analyses and dispersed empirical outcomes, in a number of cases obtaining significant effects in opposite directions for the same research question. A Boba multiverse analysis demonstrates that decisions about how to operationalize variables explain variability in outcomes above and beyond statistical choices (e.g., covariates). Subjective researcher decisions play a critical role in driving the reported empirical results, underscoring the need for open data, systematic robustness checks, and transparency regarding both analytic paths taken and not taken. Implications for organizations and leaders, whose decision making relies in part on scientific findings, consulting reports, and internal analyses by data scientists, are discussed.
AB - In this crowdsourced initiative, independent analysts used the same dataset to test two hypotheses regarding the effects of scientists’ gender and professional status on verbosity during group meetings. Not only the analytic approach but also the operationalizations of key variables were left unconstrained and up to individual analysts. For instance, analysts could choose to operationalize status as job title, institutional ranking, citation counts, or some combination. To maximize transparency regarding the process by which analytic choices are made, the analysts used a platform we developed called DataExplained to justify both preferred and rejected analytic paths in real time. Analyses lacking sufficient detail, reproducible code, or with statistical errors were excluded, resulting in 29 analyses in the final sample. Researchers reported radically different analyses and dispersed empirical outcomes, in a number of cases obtaining significant effects in opposite directions for the same research question. A Boba multiverse analysis demonstrates that decisions about how to operationalize variables explain variability in outcomes above and beyond statistical choices (e.g., covariates). Subjective researcher decisions play a critical role in driving the reported empirical results, underscoring the need for open data, systematic robustness checks, and transparency regarding both analytic paths taken and not taken. Implications for organizations and leaders, whose decision making relies in part on scientific findings, consulting reports, and internal analyses by data scientists, are discussed.
KW - Crowdsourcing data analysis
KW - Scientific transparency
KW - Research reliability
KW - Scientific robustness
KW - Researcher degrees of freedom
KW - Analysis-contingent results
KW - Crowdsourcing data analysis
KW - Scientific transparency
KW - Research reliability
KW - Scientific robustness
KW - Researcher degrees of freedom
KW - Analysis-contingent results
U2 - 10.1016/j.obhdp.2021.02.003
DO - 10.1016/j.obhdp.2021.02.003
M3 - Journal article
SN - 0749-5978
VL - 165
SP - 228
EP - 249
JO - Organizational Behavior and Human Decision Processes
JF - Organizational Behavior and Human Decision Processes
ER -