Abstrakt
Data-driven segmentation is an important tool for analyzing patterns of associations in social survey data; however, it remains a challenge to compare the quality of segmentations obtained by different methods. We present a statistical framework for quantifying the quality of segmentations of human values, by evaluating their ability to predict held-out data. By comparing clusterings of human values survey data from the forth round of European Social Study (ESS-4), we show that demographic markers such as age or country predict better than random, yet are outperformed by data-driven segmentation methods. We show that a Bayesian version of Latent Class Analysis (LCA) outperforms the standard maximum likelihood LCA in predictive performance and is more robust for different number of clusters.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Journal of Mathematical Sociology |
Vol/bind | 46 |
Udgave nummer | 1 |
Sider (fra-til) | 28-55 |
Antal sider | 28 |
ISSN | 0022-250X |
DOI | |
Status | Udgivet - 2022 |
Bibliografisk note
Published online: 17. September 2020.Emneord
- Human value segmentation
- Bayesian latent class analysis
- Predictive evaluation