Abstract
In this paper, we present PMData: a dataset that combines traditional lifelogging data with sports-activity data. Our dataset enables the development of novel data analysis and machine-learning applications where, for instance, additional sports data is used to predict and analyze everyday developments, like a person's weight and sleep patterns; and applications where traditional lifelog data is used in a sports context to predict athletes' performance. PMData combines input from Fitbit Versa 2 smartwatch wristbands, the PMSys sports logging smartphone application, and Google forms. Logging data has been collected from 16 persons for five months. Our initial experiments show that novel analyses are possible, but there is still room for improvement.
Originalsprog | Engelsk |
---|---|
Titel | MMSys '20 : Proceedings of the 11th ACM Multimedia Systems Conference |
Redaktører | Laura Toni, Ali C. Begen |
Antal sider | 6 |
Udgivelsessted | New York |
Forlag | Association for Computing Machinery |
Publikationsdato | 27 maj 2020 |
Sider | 231-236 |
Kapitel | 6 |
ISBN (Trykt) | 9781450368452 |
ISBN (Elektronisk) | 9781450368452 |
DOI | |
Status | Udgivet - 27 maj 2020 |
Udgivet eksternt | Ja |
Begivenhed | The 11th ACM Multimedia Systems Online Conference - , WWW Varighed: 8 jun. 2020 → 11 jun. 2020 Konferencens nummer: 11 https://2020.acmmmsys.org/ |
Konference
Konference | The 11th ACM Multimedia Systems Online Conference |
---|---|
Nummer | 11 |
Land/Område | WWW |
Periode | 08/06/2020 → 11/06/2020 |
Internetadresse |
Emneord
- Multimedia dataset
- Neural networks
- Machine learning
- Sports logging
- Sensor data
- Questionnaires
- Food pictures