Modeling Human Responses by Ordinal Archetypal Analysis

Anna Emilie J. Wedenborg*, Michael Alexander Harborg, Andreas Bigom, Oliver Elmgreen, Marcus Presutti, Andreas Raskov, Fumiko Kano Glückstad, Mikkel Schmidt, Morten Mørup

*Corresponding author af dette arbejde

Publikation: Bidrag til bog/antologi/rapportKonferencebidrag i proceedingsForskningpeer review

Abstract

This paper introduces a novel framework for Archetypal Analysis (AA) tailored to ordinal data, particularly from questionnaires. Unlike existing methods, the proposed method, Ordinal Archetypal Analysis (OAA), bypasses the two-step process of transforming ordinal data into continuous scales and operates directly on the ordinal data. We extend tra-ditional AA methods to handle the subjective nature of questionnaire-based data, acknowledging individual differ-ences in scale perception. We introduce the Response Bias Ordinal Archetypal Analysis (RBOAA), which learns indi-vidualized scales for each subject during optimization. The effectiveness of these methods is demonstrated on synthetic data and the European Social Survey dataset, highlighting their potential to provide deeper insights into human behav-ior and perception. The study underscores the importance of considering response bias in cross-national research and offers a principled approach to analyzing ordinal data through Archetypal Analysis.
OriginalsprogEngelsk
Titel2024 IEEE 34th International Workshop on Machine Learning for Signal Processing (IEEE MLSP 2024) : Workshop Proceedings
RedaktørerGeoffrey Ye Li, Danilo Mandic
Antal sider6
UdgivelsesstedLos Alamitos
ForlagIEEE
Publikationsdato2024
ISBN (Trykt)9798350372250
DOI
StatusUdgivet - 2024
BegivenhedThe 34th IEEE International Workshop on Machine Learning for Signal Processing. MLSP 2024 - London, Storbritannien
Varighed: 22 sep. 202425 sep. 2024
Konferencens nummer: 34
https://signalprocessingsociety.org/blog/mlsp-2024-2024-ieee-international-workshop-machine-learning-signal-processing

Konference

KonferenceThe 34th IEEE International Workshop on Machine Learning for Signal Processing. MLSP 2024
Nummer34
Land/OmrådeStorbritannien
ByLondon
Periode22/09/202425/09/2024
Internetadresse
NavnIEEE International Workshop on Machine Learning for Signal Processing.
ISSN2161-0371

Citationsformater