Mitigating Discontinuance in Medical AI Systems: The Role of AI Explanations

Aycan Aslan, Maike Greve, Lutz M. Kolbe

Publikation: KonferencebidragPaperForskningpeer review

Abstract

Despite significant advancements in medical artificial intelligence (AI) systems, these technologies are prone to mistake in their predictions. These mistakes can significantly affect medical experts’ willingness to continue using these systems. To mitigate potential discontinuation, existing research indicates that providing additional information alongside predictions, can lessen negative out- comes like discontinuation. Given the potential impact on users’ information processing, we hypothesize that AI explanations, detailing the system's decision- making process, can also influence the likelihood of discontinuing use after an AI mistake. Through an online experiment with medical experts (n=227), we demonstrate that such explanations can influence medical experts’ information processing and, consequently, mitigate the adverse effects on the actual discontinuation of AI systems following a mistake.
OriginalsprogEngelsk
Publikationsdato2024
Antal sider15
StatusUdgivet - 2024
Udgivet eksterntJa
Begivenhed19. Internationale Tagung Wirtschaftsinformatik. WI 2024 - Universität Würzburg, Würzburg, Tyskland
Varighed: 16 sep. 202419 sep. 2024
Konferencens nummer: 17
https://wi2024.de/

Konference

Konference19. Internationale Tagung Wirtschaftsinformatik. WI 2024
Nummer17
LokationUniversität Würzburg
Land/OmrådeTyskland
ByWürzburg
Periode16/09/202419/09/2024
Internetadresse

Emneord

  • Artificial intelligence
  • Decision-making
  • Explainability
  • Discontinuance
  • Medicine

Citationsformater