Abstract
The purpose of this study is to develop and demonstrate a semi-automated text analytics approach for the identification and categorization of information that can be used for country logistics assessments. In this paper, we develop the methodology on a set of documents for 21 countries using machine learning techniques while controlling both for 4 different time periods in the world FDI trends, and the different geographic and economic country affiliations. We report illustrative findings followed by a presentation of the separation of concerns/division of labor between the domain expert and the text analyst. Implications are discussed and future work is outlined.
Originalsprog | Engelsk |
---|---|
Titel | Dynamics in Logistics : Proceedings of the 5th International Conference LDIC, 2016 Bremen, Germany |
Redaktører | Michael Freitag, Herbert Kotzab, Jürgen Pannek |
Antal sider | 11 |
Udgivelsessted | Cham |
Forlag | Springer |
Publikationsdato | 2017 |
Sider | 119-129 |
Kapitel | 11 |
ISBN (Trykt) | 9783319451169 |
ISBN (Elektronisk) | 9783319451176 |
DOI | |
Status | Udgivet - 2017 |
Begivenhed | The 5th International Conference on Dynamics in Logistics. LDIC 2016 - Bremen, Tyskland Varighed: 22 feb. 2016 → 25 feb. 2016 Konferencens nummer: 5 http://www.ldic-conference.org/ |
Konference
Konference | The 5th International Conference on Dynamics in Logistics. LDIC 2016 |
---|---|
Nummer | 5 |
Land/Område | Tyskland |
By | Bremen |
Periode | 22/02/2016 → 25/02/2016 |
Internetadresse |
Navn | Lecture Notes in Logistics |
---|---|
ISSN | 2194-8917 |
Emneord
- Logistics
- Transport system evaluation
- Big data analytics
- Data mining
- Text mining
- Machine learning