Location of a Semiobnoxious Facility: A Biobjective Approach

Emilio Carrizosa, Eduardo Conde, Dolores Romero Morales

Publikation: Bidrag til bog/antologi/rapportBidrag til bog/antologiForskningpeer review

Abstrakt

In the location of a semiobnoxious facility one has to consider both transportation and environmental (or social) costs to be optimized. Such objectives are modeled as functions of the distances to a set of demand points, leading to a biobjective optimization problem.
Since the usual solution set is in general infinite and so of dubious interest to Decision Makers, we propose as solution a finite feasible set representing the best compromise solutions. Such a finite set is obtained, using the concept of α-dominance, by a standard Global Optimization technique.
OriginalsprogEngelsk
TitelAdvances in Multiple Objective and Goal Programming
RedaktørerRafael Rafael, Francisco Ruiz, Ralph Steuer
Udgivelses stedBerlin
ForlagSpringer Science+Business Media
Publikationsdato1997
Sider338-346
ISBN (Trykt)9783540635994
ISBN (Elektronisk)9783642468544
StatusUdgivet - 1997
Udgivet eksterntJa
NavnLecture Notes in Economics and Mathematical Systems
Vol/bind455
ISSN0075-8442

Bibliografisk note

CBS Bibliotek har ikke adgang til materialet

Emneord

  • Biobjective Optimization
  • Semiobnoxious Facilities
  • Branch & Bound
  • α-dominance

Citationsformater

Carrizosa, E., Conde, E., & Romero Morales, D. (1997). Location of a Semiobnoxious Facility: A Biobjective Approach. I R. Rafael, F. Ruiz, & R. Steuer (red.), Advances in Multiple Objective and Goal Programming (s. 338-346). Berlin: Springer Science+Business Media. Lecture Notes in Economics and Mathematical Systems, Bind. 455