Estimating the Quadratic Variation Spectrum of Noisy Asset Prices using Generalized Flat-Top Realized Kernels

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review


This paper analyzes a generalized class of flat-top realized kernel estimators for the quadratic variation spectrum, that is, the decomposition of quadratic variation into integrated variance and jump variation. The underlying log-price process is contaminated by additive noise, which consists of two orthogonal components to accommodate α-mixing dependent exogenous noise and an asymptotically non-degenerate endogenous correlation structure. In the absence of jumps, the class of estimators is shown to be consistent, asymptotically unbiased, and mixed Gaussian at the optimal rate of convergence, n1/4. Exact bounds on lower-order terms are obtained, and these are used to propose a selection rule for the flat-top shrinkage. Bounds on the optimal bandwidth for noise models of varying complexity are also provided. In theoretical and numerical comparisons with alternative estimators, including the realized kernel, the two-scale realized kernel, and a bias-corrected pre-averaging estimator, the flat-top realized kernel enjoys a higher-order advantage in terms of bias reduction, in addition to good efficiency properties. The analysis is extended to jump-diffusions where the asymptotic properties of a flat-top realized kernel estimate of the total quadratic variation are established. Apart from a larger asymptotic variance, they are similar to the no-jump case. Finally, the estimators are used to design two classes of (medium) blocked realized kernels, which produce consistent, non-negative estimates of integrated variance. The blocked estimators are shown to have no loss either of asymptotic efficiency or in the rate of consistency relative to the flat-top realized kernels when jumps are absent. However, only the medium blocked realized kernels achieve the optimal rate of convergence under the jump alternative.
TidsskriftEconometric Theory
Udgave nummer6
Sider (fra-til)1457-1501
Antal sider45
StatusUdgivet - dec. 2017
Udgivet eksterntJa