Enhancement of the K-means Algorithm for Mixed Data in Big Data Platforms

Oded Koren, Carina Antonia Hallin, Nir Perel, Dror Bendet

Publikation: Bidrag til bog/antologi/rapportKonferencebidrag i proceedingsForskningpeer review

213 Downloads (Pure)

Abstract

Big data research has emerged as an important discipline in information systems research and management. Yet, while the torrent of data being generated on the Internet is increasingly unstructured and non-numeric in the form of images and texts, research indicates there is an increasing need to develop more efficient algorithms for treating mixed data in big data. In this paper, we apply the classical K-means algorithm to both numeric and categorical attributes in big data platforms. We first present an algorithm which handles the problem of mixed data. We then utilize big data platforms to implement the algorithm. This provides us with a solid basis for performing more targeted profiling for business and research purposes using big data, so that decision makers will be able to treat mixed data, i.e. numerical and categorical data, to explain phenomena within the big data ecosystem.
OriginalsprogEngelsk
TitelIntelligent Systems and Applications : Proceedings of the 2018 Intelligent Systems Conference (IntelliSys). Volume 1
RedaktørerKohei Arai, Supriya Kapoor, Rahul Bhatia
Antal sider16
UdgivelsesstedCham
ForlagSpringer
Publikationsdato2019
Sider1025-1040
ISBN (Trykt)9783030010539
ISBN (Elektronisk)9783030010546
DOI
StatusUdgivet - 2019
Begivenhed6th Intelligent Systems Conference. IntelliSys - London, Storbritannien
Varighed: 6 sep. 20187 sep. 2018
Konferencens nummer: 6
http://saiconference.com/IntelliSys

Konference

Konference6th Intelligent Systems Conference. IntelliSys
Nummer6
Land/OmrådeStorbritannien
ByLondon
Periode06/09/201807/09/2018
Internetadresse
NavnAdvances in Intelligent Systems and Computing
Nummer868
ISSN2194-5357

Emneord

  • Big data
  • Mixed data
  • Hadoop
  • K-means

Citationsformater