Dynamichazard: Dynamic Hazard Models Using State Space Models

Benjamin Christoffersen

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

147 Downloads (Pure)

Abstract

The dynamichazard package implements state space models that can provide a computationally efficient way to model time-varying parameters in survival analysis. I cover the models and some of the estimation methods implemented in dynamichazard, apply them to a large data set, and perform a simulation study to illustrate the methods' computation time and performance. One of the methods is compared with other models implemented in R which allow for left-truncation, right-censoring, time-varying covariates, and timevarying parameters.
OriginalsprogEngelsk
TidsskriftJournal of Statistical Software
Vol/bind99
Udgave nummer7
Sider (fra-til)1-38
Antal sider38
DOI
StatusUdgivet - sep. 2021

Emneord

  • Survival analysis
  • Time-varying parameters
  • Extended Kalman filter
  • EM algorithm
  • Unscented Kalman filter
  • Parallel computing
  • R
  • Rcpp
  • RcppArmadillo

Citationsformater