Bayesian Versus Maximum Likelihood Estimation of Treatment Effects in Bivariate Probit Instrumental Variable Models

Florian M. Hollenbach, Jacob M. Montgomery, Adriana Crespo-Tenorio

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Abstract

Bivariate probit models are a common choice for scholars wishing to estimate causal effects in instrumental variable models where both the treatment and outcome are binary. However, standard maximum likelihood approaches for estimating bivariate probit models are problematic. Numerical routines in popular software suites frequently generate inaccurate parameter estimates and even estimated correctly, maximum likelihood routines provide no straightforward way to produce estimates of uncertainty for causal quantities of interest. In this note, we show that adopting a Bayesian approach provides more accurate estimates of key parameters and facilitates the direct calculation of causal quantities along with their attendant measures of uncertainty.
OriginalsprogEngelsk
TidsskriftPolitical Science Research and Methods
Vol/bind7
Udgave nummer3
Sider (fra-til)651-659
Antal sider9
ISSN2049-8470
DOI
StatusUdgivet - jul. 2019
Udgivet eksterntJa

Citationsformater