TY - JOUR
T1 - An Asymptotically Optimal Greedy Heuristic for the Multiperiod Single-sourcing Problem
T2 - The Cyclic Case
AU - Romeijn, H. Edwin
AU - Romero Morales, Dolores
PY - 2003
Y1 - 2003
N2 - The dynamics of the environment in which supply chains evolve requires that companies frequently redesign their logistics distribution networks. In this paper we address a multiperiod single-sourcing problem that can be used as a strategic tool for evaluating the costs of logistics network designs in a dynamic environment. The distribution networks that we consider consist of a set of production and storage facilities, and a set of customers who do not hold inventories. The facilities face production capacities, and each customer's demand needs to be delivered by a single facility in each period. We deal with the assignment of customers to facilities, as well as the location, timing, and size of inventories. In addition, to mitigate start and end-of-study effects, we view the planning period as a typical future one, which will repeat itself. This leads to a cyclic model, in which starting and ending inventories are equal. Based on an assignment formulation of the problem, we propose a greedy heuristic, and prove that this greedy heuristic is asymptotically feasible and optimal in a probabilistic sense. We illustrate the behavior of the greedy heuristic, as well as some improvements where the greedy heuristic is used as the starting point of a local interchange procedure, on a set of randomly generated test problems.
AB - The dynamics of the environment in which supply chains evolve requires that companies frequently redesign their logistics distribution networks. In this paper we address a multiperiod single-sourcing problem that can be used as a strategic tool for evaluating the costs of logistics network designs in a dynamic environment. The distribution networks that we consider consist of a set of production and storage facilities, and a set of customers who do not hold inventories. The facilities face production capacities, and each customer's demand needs to be delivered by a single facility in each period. We deal with the assignment of customers to facilities, as well as the location, timing, and size of inventories. In addition, to mitigate start and end-of-study effects, we view the planning period as a typical future one, which will repeat itself. This leads to a cyclic model, in which starting and ending inventories are equal. Based on an assignment formulation of the problem, we propose a greedy heuristic, and prove that this greedy heuristic is asymptotically feasible and optimal in a probabilistic sense. We illustrate the behavior of the greedy heuristic, as well as some improvements where the greedy heuristic is used as the starting point of a local interchange procedure, on a set of randomly generated test problems.
U2 - 10.1002/nav.10068
DO - 10.1002/nav.10068
M3 - Journal article
SN - 0894-069X
VL - 50
SP - 412
EP - 437
JO - Naval Research Logistics
JF - Naval Research Logistics
IS - 5
ER -