A New Method for Generating Random Correlation Matrices

Ilya Archakov, Peter Reinhard Hansen*, Yiyao Luo

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Abstract

We propose a new method for generating random correlation matrices that makes it simple to control both location and dispersion. The method is based on a vector parameterization, γ = g(C), which maps any distribution on R n(n−1)/2 to a distribution on the space of non-singular n × n correlation matrices. Correlation matrices with certain properties, such as being well-conditioned, having block structures, and having strictly positive elements, are simple to generate. We compare the new method with existing methods.
OriginalsprogEngelsk
Artikelnummerutad027
TidsskriftThe Econometrics Journal
Vol/bind27
Udgave nummer2
Sider (fra-til)188-212
Antal sider25
ISSN1368-4221
DOI
StatusUdgivet - maj 2024

Bibliografisk note

Published online: 21 December 2023.

Emneord

  • Random correlation matrix
  • Fisher transformation
  • Covariance modeling

Citationsformater